第67章 悠道来访(2 / 2)
其实这件事早该去做,只是众人太匆忙了忘了这件事。
晚自习,正在复习的萧铭受到了一条邮件。
看邮件的格式和邮箱账号,萧铭确定这是悠道官方发出的。
邮件很正式。
尊敬的萧铭先生,你好……
悠道找上门来了?
译狗竟然引起了翻译巨头悠道的注意?
无论是礼貌起见还是给未来一个选择,萧铭准备见一见对方。
晚自习下课后,萧铭和何向东通话,并且约定明天中午在江城三中的一家奶茶店见面。
何向东等人有些懵,在茶馆谈生意谈过,在奶茶店谈生意还是第一次。
江城三中校外奶茶店。
何向东等人见到了萧铭。
众人怎么都没有想到,在大家印象中应该是戴着厚厚镜片秃头的技术员居然是高中生?!
“译狗你做的?”何向东坐下来问道。
“传国玉玺。”萧铭四个字就表明了自己的身份。
“哈哈哈!”众人笑着,也确定了萧铭的身份。
何向东掏出名片并且主动和萧铭握手介绍众人,“悠道技术部主管何向东,这位是我们市场部经理张茂……这此我们主要是想和萧……先生交流下技术上的问题。”
萧铭太年轻,何向东“先生”两个字实在是说不出口。
“没问题。”萧铭很坦然地说道:“悠道是行业巨头,能够和你们交流是我的荣幸。”
何向东就技术问题和萧铭交流起来,萧铭对答如流。
当何向东了解萧铭给词语定向量,建立神经类网络化数据库,并且学习了几千万份资料后,足足贡献了30点惊讶值。
“这……这是怎么做到的,如此庞大的数据处理和学习,现有技术是无法做到的。神经网络翻译模型,悠道也在做,但是数据量太庞大了,我们的技术员也只做了一部分,目前也是一边使用一边增加和修改。”
萧铭笑了说道:“悠道其实和谷歌一样,使用seq2seq模型和nmt模型,也就是序列到序列和神经机器翻译,简单的说就是对词语进行翻译,对句子意义数字化处理,最后按照句子意义对翻译后的词语进行排序。这样做短句的翻译没有问题,但是遇到文章和长句,单纯的句子定义不能结合上下文,句子就会拧巴了。而且就像你说的那样,nmt需要大量数据作为支撑。”
“译狗的优点是在seq2seq和nmt的基础上,网植大量的句子和文章实例,让句子的定义更准确,因为某些词语和词语之间是有固定的搭配并且出现在指定的句子里……”
萧铭只是对译狗简单的介绍,何向东就彻底折服了!
因为译狗翻译现在的思维正是悠道未来发展的思维,但是因为技术缺陷悠道无法做到。
悠道无法做到的事,一个高中生是怎么做到的?
何向东最后代表公司提出了一个尖锐的问题:“萧先生对译狗未来的定义是什么?成为翻译界的no1?或者说,萧先生准备怎么发展译狗?”
萧铭的回答差点让何向东闷出一口老血,“这软件是我做着玩儿的,主要是为了学英语。译狗怎么发展?要是有人继续下载使用,就一直挂在那里呗。”
何向东“啊”一声,追问道:“没有想过收费和盈利?”